classify_emotion.Rd
classify_emotion
Classifies the emotion (e.g. anger, disgust, fear, joy, sadness, surprise) of a set of texts using a naive Bayes classifier trained on Carlo Strapparava and Alessandro Valitutti's emotions
lexicon.
classify_emotion( textColumns, algorithm = "bayes", prior = 1, verbose = FALSE, lang = "en", ... )
textColumns | A |
---|---|
algorithm | A |
prior | A |
verbose | A |
lang | Language, "en" for English and "pt" for Brazilian Portuguese. |
... | Additional parameters to be passed into the |
Returns an object of class data.frame
with seven columns and one row for each document.
The absolute log likelihood of the document expressing an angry sentiment.
The absolute log likelihood of the document expressing a disgusted sentiment.
The absolute log likelihood of the document expressing a fearful sentiment.
The absolute log likelihood of the document expressing a joyous sentiment.
The absolute log likelihood of the document expressing a sad sentiment.
The absolute log likelihood of the document expressing a surprised sentiment.
The absolute log likelihood of the document expressing a trust sentiment.
The absolute log likelihood of the document expressing a negative sentiment.
The absolute log likelihood of the document expressing a positive sentiment.
The absolute log likelihood of the document expressing a anticipation sentiment.
The most likely sentiment category (e.g. anger, disgust, fear, joy, sadness, surprise) for the given text.
Timothy P. Jurka <tpjurka@ucdavis.edu> and Jodavid Ferreira <jdaf1@de.ufpe.br>
# DEFINE DOCUMENTS documents <- c("I am very happy, excited, and optimistic.", "I am very scared, annoyed, and irritated.") # CLASSIFY EMOTIONS classify_emotion(documents,algorithm="bayes",verbose=TRUE, lang = "en")#> Warning: custom functions are ignored#> [1] "DOCUMENT 1" #> [1] "WORD: excited CAT: joy SCORE: 7.04664727784876" #> [1] "WORD: excited CAT: surprise SCORE: 6.42162226780652" #> [1] "WORD: excited CAT: trust SCORE: 7.11558212618445" #> [1] "WORD: excited CAT: positive SCORE: 7.74586822979227" #> [1] "WORD: excited CAT: anticipation SCORE: 6.73221070646721" #> [1] "WORD: happy CAT: joy SCORE: 7.04664727784876" #> [1] "WORD: happy CAT: trust SCORE: 7.11558212618445" #> [1] "WORD: happy CAT: positive SCORE: 7.74586822979227" #> [1] "WORD: happy CAT: anticipation SCORE: 6.73221070646721" #> [1] "DOCUMENT 2" #> [1] "WORD: annoyed CAT: anger SCORE: 7.32909373624659" #> [1] "WORD: irritated CAT: anger SCORE: 7.32909373624659" #> [1] "WORD: scared CAT: fear SCORE: 7.39326309476384"#> ANGER DISGUST FEAR #> [1,] "2.29461377373361" "2.61429857727156" "2.23044441521636" #> [2,] "16.9528012462268" "2.61429857727156" "9.6237075099802" #> JOY SADNESS SURPRISE TRUST #> [1,] "16.670354787829" "2.3844925362004" "9.6237075099802" "16.7392896361647" #> [2,] "2.57706023213145" "2.3844925362004" "3.20208524217368" "2.50812538379575" #> POSITIVE NEGATIVE ANTICIPATION BEST_FIT #> [1,] "17.3695757397725" "1.51478335400486" "16.3559182164474" "positive" #> [2,] "1.87783928018793" "1.51478335400486" "2.89149680351299" "anger"# pt-BR documentos <- c("Estou muito feliz, animado e otimista.", "Estou muito assustado e irritado.") # CLASSIFY EMOTIONS classify_emotion(documentos,algorithm="bayes",verbose=TRUE, lang = "pt")#> Warning: custom functions are ignored#> [1] "DOCUMENT 1" #> [1] "WORD: animado CAT: disgust SCORE: 7.00940893270864" #> [1] "WORD: animado CAT: fear SCORE: 7.39326309476384" #> [1] "WORD: animado CAT: surprise SCORE: 6.42162226780652" #> [1] "WORD: animado CAT: trust SCORE: 7.11558212618445" #> [1] "WORD: animado CAT: positive SCORE: 7.74586822979227" #> [1] "WORD: animado CAT: anticipation SCORE: 6.73221070646721" #> [1] "WORD: estou CAT: anger SCORE: 7.32909373624659" #> [1] "WORD: estou CAT: fear SCORE: 7.39326309476384" #> [1] "WORD: estou CAT: negative SCORE: 8.10892415597534" #> [1] "WORD: feliz CAT: anger SCORE: 7.32909373624659" #> [1] "WORD: feliz CAT: disgust SCORE: 7.00940893270864" #> [1] "WORD: feliz CAT: joy SCORE: 7.04664727784876" #> [1] "WORD: feliz CAT: negative SCORE: 8.10892415597534" #> [1] "WORD: muito CAT: anger SCORE: 7.32909373624659" #> [1] "WORD: muito CAT: fear SCORE: 7.39326309476384" #> [1] "WORD: otimista CAT: positive SCORE: 7.74586822979227" #> [1] "WORD: otimista CAT: anticipation SCORE: 6.73221070646721" #> [1] "DOCUMENT 2" #> [1] "WORD: estou CAT: anger SCORE: 7.32909373624659" #> [1] "WORD: estou CAT: fear SCORE: 7.39326309476384" #> [1] "WORD: estou CAT: negative SCORE: 8.10892415597534" #> [1] "WORD: muito CAT: anger SCORE: 7.32909373624659" #> [1] "WORD: muito CAT: fear SCORE: 7.39326309476384" #> [1] "WORD: assustado CAT: fear SCORE: 7.39326309476384" #> [1] "WORD: assustado CAT: joy SCORE: 7.04664727784876" #> [1] "WORD: assustado CAT: sadness SCORE: 7.23921497377981" #> [1] "WORD: assustado CAT: negative SCORE: 8.10892415597534" #> [1] "WORD: assustado CAT: anticipation SCORE: 6.73221070646721" #> [1] "WORD: irritado CAT: anger SCORE: 7.32909373624659" #> [1] "WORD: irritado CAT: joy SCORE: 7.04664727784876" #> [1] "WORD: irritado CAT: sadness SCORE: 7.23921497377981"#> RAIVA DESGOSTO MEDO #> [1,] "24.2826222792756" "16.633843739491" "24.4109609963101" #> [2,] "24.2826222792756" "2.61502587407376" "24.4109609963101" #> ALEGRIA TRISTEZA SURPRESA #> [1,] "9.6244348067824" "2.3852198330026" "9.6244348067824" #> [2,] "16.6710820846312" "16.8636497805622" "3.20281253897588" #> CONFIANÇA POSITIVA NEGATIVA #> [1,] "9.6244348067824" "17.3703030365747" "17.7333589627577" #> [2,] "2.50885268059795" "1.87856657699013" "17.7333589627577" #> ANTECIPAÇÃO BEST_FIT #> [1,] "16.3566455132496" "medo" #> [2,] "9.6244348067824" "medo"